4730 Mechanics 3

1	$\begin{aligned} & \text { (i) } \quad \mathrm{T}=(1.35 \mathrm{mg})(3-1.8) \div 1.8 \\ & {[0.9 \mathrm{mg}=\mathrm{ma}]} \\ & \text { Acceleration is } 8.82 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		For using $\mathrm{T}=\mathrm{ma}$
	$\begin{aligned} & \text { (ii) } \quad \begin{array}{l} \text { Initial EE } \\ {[1.25 \mathrm{mg})(3-1.8)^{2} \div(2 \times 1.8)} \\ \text { Speed is } 3.25 \mathrm{~ms}^{-1} \end{array} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	For using $1 / 2 \mathrm{mv}{ }^{2}=$ Initial EE

4 (i) [$\mathrm{mgsin} \alpha-0.2 \mathrm{mv}=\mathrm{ma}$] $\begin{aligned} & 5 \frac{d v}{d t}=28-v \\ & {\left[\int \frac{5}{28-v} d v=\int d t\right]} \end{aligned}$ (C) $-5 \ln (28-\mathrm{v})=\mathrm{t}$ $\begin{aligned} & \ln [(28-\mathrm{v}) / 28]=-\mathrm{t} / 5 \\ & {\left[28-\mathrm{v}=28 \mathrm{e}^{\mathrm{t} / 5}\right]} \\ & \mathrm{v}=28\left(1-\mathrm{e}^{-t / 5}\right) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1ft } \\ & \text { M1 } \\ & \text { A1ft } \end{aligned}$		For using Newton's second law AG For separating variables and integrating For using $\mathrm{v}=0$ when $\mathrm{t}=0$ ft for $\ln [(28-\mathrm{v}) / 28]=\mathrm{t} / \mathrm{A}$ from $\mathrm{C}+\mathrm{A} \ln (28-\mathrm{v})=\mathrm{t}$ previously For expressing v in terms of t ft for $\mathrm{v}=28\left(1-\mathrm{e}^{\mathrm{t} / \mathrm{A}}\right)$ from $\ln [(28-\mathrm{v}) / 28]=\mathrm{t} / \mathrm{A}$ previously
(ii) $\left[\mathrm{a}=28 \mathrm{e}^{-2} / 5\right]$ Acceleration is $0.758 \mathrm{~ms}^{-2}$	M1 A1ft	2	For using $\mathrm{a}=(28-\mathrm{v}(\mathrm{t})) / 5$ or $\mathrm{a}=$ $\mathrm{d}\left(28-28 \mathrm{e}^{-t / 5}\right) \mathrm{dt}$ and substituting $\mathrm{t}=10$. ft from incorrect v in the form $\mathrm{a}+\mathrm{be}^{\mathrm{ct}}(\mathrm{b} \neq 0)$; Accept $5.6 / \mathrm{e}^{2}$

