4730 Mechanics 3

1	(i) $T = (1.35mg)(3 - 1.8) \div 1.8$	B1		
	[0.9mg = ma]	M1		For using $T = ma$
	Acceleration is 8.82ms ⁻²	A1	3	
	(ii) Initial EE =			
	$(1.35 \text{mg})(3 - 1.8)^2 \div (2 \text{x} 1.8)$	B1		
	$[\frac{1}{2} \text{ mv}^2 = 0.54 \text{mg}]$	M1		For using $\frac{1}{2}$ mv ² = Initial EE
	Speed is 3.25ms ⁻¹	A1	3	
2	(i)	M1		For using NEL vertically
	Component is 8esin27 ^o	A1		
	Component is 2.18ms ⁻¹	A1	3	
	(ii) Change in velocity vertically =			
	$8\sin 27^{\circ}(1 + e)$	B1ft		ft $8\sin 27^\circ$ + candidate's ans. in (i)
				For using $ I = m x$ change in
	$ \mathbf{I} = 0.2 \ge 5.81$	MI		velocity
		410	2	It incorrect ans. in (1) providing
	Magnitude of Impulse is 1.16 kgms	AIft	3	both M marks are scored.
2				For using the principle of
3				conservation of momentum in the
		M1		i direction
	$0.8x12\cos 60^\circ = 0.8a + 2b$	A 1		I direction
	0.041200300 0.04 20	M1		For using NEL
	$0.75 \times 12 \cos 60^\circ = h - a$	A1		
	0., 0.1200000 0 u	111		For eliminating b depends on at
	[4.8 = 0.8a + 2(a + 4.5)]	DM1		least one previous M mark
	a = -1.5	A1		
	Comp. of vel. perp. to l.o.c. after impact is			
	12sin60°	B1		
				For correct method for speed or
		M1		direction
	The speed of A is 10.5ms ⁻¹	A1ft		ft $v^2 = a^2 + 108$
				Accept $\theta = 81.8^{\circ}$ if θ is clearly
				and appropriately indicated;
	Direction of A is at 98.2° to l.o.c.	Alft	10	ft tan ⁻¹ θ = (12sin60°)/ a)

4	(i) $[mgsin \alpha - 0.2mv = ma]$	M1		For using Newton's second law
	$5\frac{dv}{dt} = 28 - v$			
	dt	A1		AG
				For separating variables and
	$\left[\int \frac{1}{28 - v} dv = \int dt\right]$	M1		integrating
	$(C) - 5\ln(28 - v) = t$	A1		
		M1		For using $v = 0$ when $t = 0$
				ft for $\ln[(28 - v)/28] = t/A$ from
	$\ln[(28 - v)/28] = -t/5$	A1ft		C + Aln(28 - v) = t previously
	$[28 - v = 28e^{-t/5}]$	M1		For expressing v in terms of t
				ft for $v = 28(1 - e^{t/A})$ from
	$v = 28(1 - e^{-t/5})$	A1ft	8	$\ln[(28 - v)/28] = t/A$ previously
	(ii)			For using $a = (28 - v(t))/5$ or $a =$
				$d(28 - 28e^{-t/5})$ dt and substituting
	$[a = 28e^{-2}/5]$	M1		t = 10.
				ft from incorrect v in the form
	Acceleration is 0.758ms ⁻²	A1ft	2	$a + be^{ct}$ ($b \neq 0$); Accept 5.6/ e^2
5	(i)			For taking moments about B or
				about A for the whole or
				For taking moments about X for
				the whole and using $R_A + R_B =$
		M1		280 and $F_A = F_B$
	$1.4R_A = 150x0.95 + 130x0.25$ or			
	$1.4R_{\rm B} = 130x1.15 + 150x0.45$ or			
	$1.2F - 0.9(280 - R_B) + 0.45x150 - 1.2F +$			
	$0.5R_{\rm B}$	Al		
	$-0.25 \times 130 = 0$			
	$R_A = 125N$	Al		AG
	$R_{\rm B} = 155 \rm N$	BI		
	(11)			For taking moments about X for
	1 OF 150 0 45 + 0 0D	MI		XA or XB
	$1.2F_{\rm A} = -150x0.45 + 0.9R_{\rm A}$ or	. 1		
	$1.2F_{\rm B} = 0.5K_{\rm B} - 130x0.25$	Al		E (1.05D 01.05)/0
	$F_A \text{ or } F_B = 37.5 \text{N}$	Alft		$F_{\rm B} = (1.25R_{\rm B} - 81.25)/3$
	$F_B \text{ or } F_A = 3/.5N$	BItt	4	
	(III) Horizontal component is 37.5N to the	D10		It $H = F$ or $H = 56.25 - 0.75V$ or
	Іеп	BII		12H = 325 + 5V
	[X D 150]	14		For resolving forces on XA
	$[Y + K_A = 150]$	MI	2	vertically
1	vertical component is 25N upwards	Altt	3	$\pi 3V = 225 - 4H \text{ or } V = 2.4H - 65$

6 (i)				For applying Newton's second law
[0.36 - 0.14]	4x = 0.1a]	M1		
$\ddot{x} = 3.6 - 1.44x$		A1		
$\ddot{y} = -1.44 y \Rightarrow SH$	M or			
$d^{2}(x - 25)/dt^{2}$	-144(-25) SUD4	B1		
a (x-2.3)/ai =	$= -1.44(x - 2.3) \rightarrow SHM$			
		M1		For using $T = 2\pi / n$
Of period 5.24s		A1	5	AG
(ii) Amplitude i	s 0.5m	B1		
	2	M1		For using $v^2 = n^2(a^2 - y^2)$
$0.48^2 = 1.2^2 (0.5^2 - y)$	2)	Alft		
Possible values are 2	.2 and 2.8	Al	4	
(111) $[t_0 = (\sin^2 0.6)/1]$.2; $t_1 = (\cos^{-1} 0.6)/1.2$]	MI		For using $y = 0.5 \sin 1.2t$ to find t_0 or y
t = 0.52(25) and	- 0 7727	A 1		= $0.5\cos 1.2t$ to find t_1
$t_0 = 0.53625 \dots \text{ or } t_1$	= 0.7727	AI		Principal value may be implied
(a) $[2(\sin^{-1}0.6)/1.2 \text{ or } (\pi$	$2\cos^{-1}(0.6)/(1.2)$	M1		For using $\Delta t = 2t_0$ or
$[2(\sin 0.0)/1.2 \text{ of } (\pi$	2 - 2005 0.0)/1.2]	IVI I		$\Delta t = T/2 - 2t_1$
Time interval is 1.07	S	Alft		ft incorrect t_0 or t_1
(b)				From $\Delta t = T/2 - 2t_0$ or $\Delta t = 2t_1$; ft
Time interval is 1.55	-	D14	5	2.62 - ans(a) or
Time interval is 1.55	S	ыш	3	incorrect t_0 or t_1
7 (i)		M1		For using KE gain = PE loss
$\frac{1}{2} \text{ mv}^2 = \text{mga}(1 - \cos \theta)$	$(\mathbf{\theta})$	A1		
$aw^2 = 2g(1 - \cos\theta)$		B1	3	AG From $v = wr$
(ii)				For using Newton's second law
				radially (3 terms required) with accel
		M1		$= v^2/r \text{ or } w^2 r$
$mv^2/a = mg\cos\theta - F$	R or maw ² = mgcos θ – R	A1		
	-			For eliminating v^2 or w^2 ; depends on
$\left[2\mathrm{mg}(1-\cos\theta)\right] = \mathrm{m}$	$[g\cos\theta - R]$	DM1		at least one previous M1
$R = mg(3\cos\theta - 2)$		A1ft	4	ft sign error in N2 equation
(iii)				For using Newton's second law
$[mgsin \mathbf{A} = m(accel)]$) or			ton conticilly
[mgsm0 – m(accer.)	,			langenhally or
	-(0) $-(0)$			differentiating
	$2a(\theta)\theta = 2gsin\theta(\dot{\theta})$]	M1		differentiating $aw^2 = 2g(1 - \cos\theta) w r t t$
1 (\ddot{a}) \dot{a}	$2a(\theta)\theta = 2gsin\theta(\dot{\theta})$]	M1 A1		differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t
Accel. (= $a\ddot{\theta}$) = gsin	$2a(\theta)\theta = 2gsin\theta(\dot{\theta})$] $n\theta$	M1 A1		differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t
Accel. (= $a\ddot{\theta}$) = gsin [$\theta = \cos^{-1}(2/3)$]	$2a(\theta)\theta = 2g\sin\theta(\dot{\theta})$]	M1 A1 M1		tangentially of differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0
Accel. $(=a\ddot{\theta}) = gsin$ $[\theta = cos^{-1}(2/3)]$	$2a(\theta)\theta = 2g\sin\theta(\dot{\theta})$]	M1 A1 M1		tangentially of differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form
Accel. $(=a\ddot{\theta}) = gsir$ $[\theta = cos^{-1}(2/3)]$	$2a(\theta)\theta = 2gsin\theta(\dot{\theta})$] $n\theta$	M1 A1 M1		tangentially of differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0;
Accel. (= $a\ddot{\theta}$) = gsir [θ =cos ⁻¹ (2/3)] Acceleration is 7.30n	$2a(\theta)\theta = 2gsin\theta(\dot{\theta})$] $n\theta$ ms^{-2}	M1 A1 M1 A1ft	4	tangentially of differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3
Accel. (= $a\ddot{\theta}$) = gsin [θ =cos ⁻¹ (2/3)] Acceleration is 7.30n (iv)	$2a(\theta)\theta = 2g\sin\theta(\dot{\theta})$ $n\theta$ ns^{-2}	M1 A1 M1 A1ft	4	tangentially of differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change =
Accel. (= $a\ddot{\theta}$) = gsin [θ =cos ⁻¹ (2/3)] Acceleration is 7.30n (iv)	$2a(\theta)\theta = 2g\sin\theta(\dot{\theta})$ $n\theta$ ms^{-2}	M1 A1 M1 A1ft M1	4	tangentially of differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change = (dR/d θ)(d θ /dt)
Accel. $(=a\ddot{\theta}) = gsir$ $[\theta = cos^{-1}(2/3)]$ Acceleration is 7.30n (iv) $dR/dt = (-3mgsin\theta)$	$2a(\theta)\theta = 2g\sin\theta(\dot{\theta})$] $n\theta$ ms^{-2} $\sqrt{2g(1 - \cos\theta)/a}$	M1 A1 M1 A1ft M1	4	tangentially of differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change = (dR/d θ)(d θ /dt) ft from incorrect R of the form
Accel. (= $a\ddot{\theta}$) = gsir [θ =cos ⁻¹ (2/3)] Acceleration is 7.30n (iv) dR/dt = (-3mgsin θ)	$2a(\theta)\theta = 2g\sin\theta(\dot{\theta})$] $n\theta$ ms^{-2} $\sqrt{2g(1 - \cos\theta)/a}$	M1 A1 M1 A1ft M1 A1ft	4	tangentially of differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change = (dR/d θ)(d θ /dt) ft from incorrect R of the form mg(Acos +B), A \neq 0
Accel. (= $a\ddot{\theta}$) = gsir [θ =cos ⁻¹ (2/3)] Acceleration is 7.30n (iv) dR/dt = (-3mgsin θ)	$2a(\theta)\theta = 2g\sin\theta(\dot{\theta})$] $n\theta$ $\frac{ns^{-2}}{\sqrt{2g(1-\cos\theta)/a}}$	M1 A1 M1 A1ft M1 A1ft M1	4	tangentially of differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change = (dR/d θ)(d θ /dt) ft from incorrect R of the form mg(Acos +B), A \neq 0 For using cos θ =2/3
Accel. (= $a\ddot{\theta}$) = gsin [θ =cos ⁻¹ (2/3)] Acceleration is 7.30n (iv) dR/dt = (-3mgsin θ)	$2a(\theta)\theta = 2g\sin\theta(\dot{\theta})$] $n\theta$ $\frac{ns^{-2}}{\sqrt{2g(1-\cos\theta)/a}}$	M1 A1 M1 A1ft M1 A1ft M1	4	tangentially of differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change = (dR/d θ)(d θ /dt) ft from incorrect R of the form mg(Acos +B), A \neq 0 For using cos θ =2/3 Any correct form of \dot{R} with
Accel. (= $a\ddot{\theta}$) = gsin [θ =cos ⁻¹ (2/3)] Acceleration is 7.30n (iv) dR/dt = (-3mgsin θ)	$2a(\theta)\theta = 2g\sin\theta(\dot{\theta})$ $n\theta$ ms^{-2} $\sqrt{2g(1 - \cos\theta)/a}$ $\sqrt{10g} Ns^{-1}$	M1 A1 M1 A1ft M1 A1ft M1	4	tangentially of differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change = (dR/d θ)(d θ /dt) ft from incorrect R of the form mg(Acos +B), A \neq 0 For using cos θ =2/3 Any correct form of \dot{R} with cos θ =2/3 used ft with from
Accel. $(=a\ddot{\theta}) = gsin$ $[\theta = cos^{-1}(2/3)]$ Acceleration is 7.30n (iv) $dR/dt = (-3mgsin\theta)$ Rate of change is - m	$2a(\theta)\theta = 2g\sin\theta(\dot{\theta})$ $\ln\theta$ ms^{-2} $\sqrt{2g(1 - \cos\theta)/a}$ $g\sqrt{\frac{10g}{3a}} Ns^{-1}$	M1 A1 M1 A1ft M1 A1ft M1	4	tangentially of differentiating $aw^2 = 2g(1 - \cos\theta)$ w.r.t. t For using R = 0 ft from incorrect R of the form mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3 For using rate of change = (dR/d θ)(d θ /dt) ft from incorrect R of the form mg(Acos +B), A \neq 0 For using cos θ =2/3 Any correct form of \dot{R} with cos θ =2/3 used; ft with from incorrect R of the form mg(Acos